Synthesis and Structure of Strained, Cyclic Bisallenes

Jibing Lin, Yi Pang, Victor G. Young, Jr., and Thomas J. Barton*

Ames Laboratory (U.S. Department of Energy) and Department of Chemistry, Iowa State University
Ames, Iowa 50011

Received January 25, 1993
Although we recently reported the surprising observations that 1,3-dilithio-1,3-bis(trimethylsilyl)allene (1) cleanly condenses with α-, ω-dichlorosilanes 2-4 to produce the strained silacycloallenes 5-7, ${ }^{1}$ we assumed that polymerization, not cyclization, was the only reasonable option for the condensation of 1 and $\mathrm{ClMe}_{2} \mathrm{SiSiMe}_{2} \mathrm{Cl}$ or $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$.

In contrast to this assumption, reaction of 1 and $\mathrm{ClMe}_{2} \mathrm{SiSiMe}_{2}{ }^{-}$ Cl in THF affords in combined 57% yield an ca. 1:1 mixture of diastereomers 8 (meso) and $8(d l)$. One of these diastereomers could be purified by fractional crystallization, thus allowing subtraction for the spectral features of the other. ${ }^{2}$

Assignment of structure could not be accomplished by NMR as chiral shift reagents were ineffective, but the meso structure was established for the selectively crystallized isomer by X-ray diffraction ${ }^{3}$ and the molecular structure is shown in Figure 1. The allene unit is bent only slightly from linearity to 178.6° but is twisted to produce a dihedral angle of 80.6° as defined as plane $\mathrm{Si}(1) \mathrm{C}(1) \mathrm{C}(2)$ vs $\mathrm{Si}(4) \mathrm{C}(3) \mathrm{C}(2)$. However, a dihedral angle of 86.1° is obtained from plane $\mathrm{Si}(1) \mathrm{C}(1) \mathrm{Si}(2)$ vs $\mathrm{Si}(3) \mathrm{C}(3) \mathrm{Si}(4)$, and comparison of plane $\mathrm{Si}(2) \mathrm{C}(1) \mathrm{C}(2)$ and $\mathrm{Si}(3) \mathrm{C}(3) \mathrm{C}(2)$ yields an apparently normal 89.4°-a result of both the bending and apparent rehybridization of the allene carbons as evidenced both by the bond angles and pyramidalization.

Condensation of $\mathrm{Cl}_{2} \mathrm{Me}_{2} \mathrm{Si}$ and dianion 1 in $\mathrm{Et}_{2} \mathrm{O}$ produced in 32% yield the polysilaallene $9\left(M_{\mathrm{w}}=6900, M_{\mathrm{n}}=6500\right)$ along with a trace of 1,3,5,7-tetrakis(trimethylsilyl)-4,8-disilacycloocta-

[^0]

Figure 1. ORTEP drawing of 8 (meso). The methyl groups have been omitted for clarity. Selected bond distances (\AA) and angles (deg) are $\mathrm{Si}(1)-\mathrm{C}(1)=1.866(4), \mathrm{C}(1)-\mathrm{C}(2)=1.305(5), \mathrm{Si}(2)-\mathrm{C}(1)=1.879(4)$, $\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)=4.162, \mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{Si}(2)=124.5(2), \mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{C}(2)=$ $118.9(3), \mathrm{Si}(2)-\mathrm{C}(1)-\mathrm{C}(2)=116.6(3), \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)=178.6$.

1,2,5,6-tetraene (10). ${ }^{4}$ The same condensation conducted in THF

afforded 10 in 33% yield as crystalline needles, $\mathrm{mp} 115-17^{\circ} \mathrm{C}$. The 'H NMR spectrum of $\mathbf{1 0}$ (Table I) revealed a symmetrical structure which could be rationalized as a rapidly equilibrating chair form which, however, was not supported by NMR studies down to $-42^{\circ} \mathrm{C}$.

The molecular structure of 10 was solved by X-ray diffraction ${ }^{5}$ and is shown in Figure 2. Of greatest interest is the allene bend of 175.2° and twist of 78.1°, as defined by the $\mathrm{Si}(2)-\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{Si}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ planes. In addition, to accommodate two allenes in an 8 -membered ring, the terminal carbons have undergone apparent rehybridization to decrease the internal bond angles with a concomitant increase in the external ($\mathrm{Si}-\mathrm{C}-\mathrm{SiMe}$) angles (Figure 3).

All-carbon, cyclic bisallenes have been reported, ${ }^{6}$ with the smallest isolated being the 10 -membered ring 11. ${ }^{7-9}$ As the crystal structure of 11 has been determined, ${ }^{8}$ the transannular distances between the central carbon atoms may be compared. As expected, the longer bonds associated with silicon produce a significantly longer $C(2)-C\left(2^{\prime}\right)$ distance of $4.162 \AA$ in 8 as opposed to 3.208 \AA in 11. However, this transannular distance in 10, $2.859 \AA$, is notably shorter than in 11 but slightly longer ($0.26 \AA$) than the transannular sp-carbon distances in the smallest cyclic diyne for which structural information is available, 1,5-cyclooctadiyne (12). ${ }^{10}$ The sp-carbons of 12 ($\delta 95.8$) are shifted considerably downfield from those of normal acetylenes, an effect which has been ascribed to the olefinic character of the bent acetylenes in
(4) 10: mp $115-117^{\circ} \mathrm{C}$; GCMS $m / z 480\left(66, \mathrm{M}^{+}\right), 465$ (53), 155 (10), 73 (100); GCIR (cm-1) 2961 (m), 2905 (w), 1871 (vs), 1406 (w), 1258 (m), $904(\mathrm{~s}), 844(\mathrm{~s}) ;$ UV (nm, hexane) $\lambda_{\max }=204\left(5.34 \times 10^{4}\right), \lambda_{\mathrm{sh}}=252(2.94$ $\left.\times 10^{3}\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{48} \mathrm{Si}_{6}, m / z 480.23718$, measd 480.23697 .
(5) Crystal data for $10 \mathrm{at}-60^{\circ} \mathrm{C}: a=12.244(2) \AA, c=10.523(2) \AA, V$ $=1577.5(7) \AA^{3}$, tetragonal with space group $P 42,2, Z=2, \rho=1.013 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by direct methods, $R=0.031$ and $R_{w}=0.046$ for 1063 reflections with $F_{0}^{2}>2.0 \sigma\left(F_{0}^{2}\right)$.
(6) For an excellent review of cyclic allenes, see: Johnson, R. P. Chem. Rev. 1989, 89, 1111.
(7) Skattebol, L. Tetrahedron Lett. 1961, 167.
(8) Irngartinger, H.; Jager, H. U. Tetrahedron Lett. 1976, 3595.
(9) The isomeric cyclodeca-1,2,5,6-tetraene is known, but structural details are not available: Baird, M. S.; Reese, C. B. Tetrahedron 1976, 32, 2153. (10) Kloster-Jensen, E.; Wirz, J. Helv. Chim. Acta 1975, 58, 162.

Table I. Selected Spectral Features of Tetrakis(trimethylsilyl)allene, 8 (meso), and 10

compd	IR (cm^{-1})	${ }^{1} \mathrm{H}$ NMR (δ)	${ }^{13} \mathrm{C}$ NMR (δ)	${ }^{29} \mathrm{Si}$ NMR (${ }^{\text {(})}$
$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{4} \mathrm{C}_{3}$	1870		0.40 (12 C)	-3.93
			203.64 (1 C)	
			64.03 (2 C)	
8 (meso)	1867	0.12 (s, 36 H$)$	-0.56 (4 C)	$\begin{array}{r} -22.75(4 \mathrm{Si}) \\ -3.24(4 \mathrm{Si}) \end{array}$
		0.17 (s, 12 H$)$	0.05 (4C)	
		0.22 (s, 12 H)	0.97 (12 C)	
			62.21 (4 C)	
			203.72 (2 C)	
10	1871	0.09 (s, 36 H)	0.55 (12 C)	$\begin{array}{r} -5.06(4 \mathrm{Si}) \\ 0.20(2 \mathrm{Si}) \end{array}$
		0.23 (s, 12 H)	2.24 (4C)	
			66.0 (4 C)	
			205.38 (2 C)	

Figure 2. ORTEP drawings of $\mathbf{1 0}$. Selected bond lengths (\AA) and angles (deg) are $\mathrm{Si}(1)-\mathrm{C}(1)=1.861(2), \mathrm{Si}(2)-\mathrm{C}(1)=1.881(2), \mathrm{C}(1)-\mathrm{C}(2)=$ $1.311(3), C(1)-C(2)-C(3)=175.2(2)$.

10

11

12

Figure 3. Comparison of transannular distances between sp-carbons in strained, cyclic bisallenes and 1,5-cyclooctadiyne.
12 rather than to a "proximity effect"." Although no large shifts are observed in the ${ }^{13} \mathrm{C}$ NMR of 10 relative to 8 , future efforts at probing the chemistry of these cyclic bisallenes will seek evidence for proximity interaction.
(11) For a review of "proximity interaction of acetylenes", see: Misuni, S.; Kaneda, T. In The Chemistry of the Carbon-Carbon Triple Bond; Patai, S., Ed.; John Wiley \& Sons: Chichester, 1978; Chapter 16.

Photolysis of 8 (meso) or $8(d l)$ in hexane with a low-pressure Hg -arc lamp produced an approximately $1: 1$ mixture of the two diastereoisomers. After ca. 2 h of irradiation, a third isomer (13) ${ }^{12}$ was observed in the reaction mixture (14% after 24 h). The

photoinduced racemization of allenes is well established, ${ }^{13}$ but the photoisomerization of 8 to 13 is to our knowledge unprecedented and formally represents two dyatropic rearrangements. Under the same conditions of photolysis, $\mathbf{1 0}$ failed to react.
Gas-phase flow pyrolysis of two different mixtures of 8 (meso) and 8 (dl), one at 545 and one at $585^{\circ} \mathrm{C}$, also produced 13 as the major product along with a significant amount of isomer

14, ${ }^{14}$ which is assumed to be an intermediate in the 8 -to- 13 conversion. Bisallene $\mathbf{1 0}$ was unchanged upon pyrolysis at 600 ${ }^{\circ} \mathrm{C}$ and at $650^{\circ} \mathrm{C}$ began to decompose to a myriad of products.

Acknowledgment. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-ENG-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences.

[^1]
[^0]: (1) Pang, Y.; Petrich, S. A.; Young, V. G. Jr.; Gordon, M. S.; Barton, T. J. J. Am. Chem. Soc. 1993, 115, 2534.
 (2) 8 (meso): mp $215-216^{\circ} \mathrm{C}$; GCMS $m / z 523$ ($57, \mathrm{M}^{+}-{ }^{28} \mathrm{SiMe}_{3}, \mathrm{M}^{+}$ not observed by GCMS), 341 (31), 283 (19), 225 (11), 185 (18), 171 (20), 155 (13), 73 (100); GC-FTIR (cm^{-1}) 2959 (m), 2904 (w), 1867 (vs), 1404 (w), 1254 (m), 881 (s), 844 (s); HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{60} \mathrm{Si}_{8} m / z 596.284$ 93, measd (Kratos MS50) 596.28455 ; UV (nm, hexane) $\lambda_{\text {max }}=202\left(5.8 \times 10^{4}\right)$, $258\left(7.2 \times 10^{3}\right) .8(d l):$ GCMS (separated from $8($ meso $) ~ m / z 523(57), 341$ (34), 225 (10), 185 (16), 171 (18), 155 (13), 73 (100); GC-FTIR (cm^{-1}) 2960 (m), 1864 (vs), 1402 (w), 1255 (m) 874 (s), 846 (s), 790 (m); 'H NMR (300 $\left.\mathrm{MHz}, \mathrm{DCCl}_{3}\right) \delta 0.14(\mathrm{~s}, 36 \mathrm{H}), 0.17(\mathrm{~s}, 12 \mathrm{H}), 0.23(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta-0.24(4 \mathrm{C}), 0.14(4 \mathrm{C}), 1.30(12 \mathrm{C}), 61.81(4 \mathrm{C}), 203.78(2 \mathrm{C})$; ${ }^{29}$ Si NMR (external TMS) $\delta-18.62$ (4 Si), -2.33 (4 Si$)$.
 (3) Crystal data for 8 (meso) at $-50^{\circ} \mathrm{C}: a=8.768(2) \AA, b=11.291$ (3) $\AA, c=11.726(3) \AA, \alpha=104.74(2)^{\circ}, \beta=102.42(2)^{\circ}, \gamma=111.42(2)^{\circ}, V=$ 982.1(4) \AA^{3}, triclinic with space group $P 1, Z=1, \rho=1.01 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by direct methods, $R=0.049$ and $R_{\mathrm{w}}=0.068$ for 2272 reflections with $F_{0}{ }^{2}>3.0 \sigma\left(F_{0}{ }^{2}\right)$.

[^1]: (12) 13: colorless crystals, mp $190-191^{\circ} \mathrm{C}$; GCMS (M ${ }^{+}$not observed) $m / z 523$ (24, M^{+}- SiMe_{3}), 411 (15), 185 (11), 155 (11), 73 (100); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{48} \mathrm{Si}_{6} \mathrm{~m} / \mathrm{z} 596.28493$, measd (Kratos MS50) m/z 596.284 87, GC-FTIR (cm^{-1}) 2959 (m), 2903 (w), 1861 (vs), 1254 (m), 868 (s), 803 (s); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DCCl}_{3}$) $\delta 0.096(\mathrm{~s}, 36 \mathrm{H}), 0.141(\mathrm{~s}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta-2.24(8 \mathrm{C}), 0.66(12 \mathrm{C}), 60.83(2 \mathrm{C}), 64.43(2 \mathrm{C}), 201.81$ (2 C); ${ }^{29} \mathrm{Si}$ NMR (DCCl_{3}, external TMS) $\delta-24.51(4 \mathrm{Si}),-3.98(4 \mathrm{Si})$; UV (nm, hexane) $\lambda_{\max }=208\left(5.9 \times 10^{4}\right), \lambda_{\text {sh }}=226\left(4.5 \times 10^{4}\right), 256\left(1.8 \times 10^{4}\right)$.
 (13) Photoinduced racemization of allenes has been reported: Stierman, T. J.; Johnson, R. P. J. Am. Chem. Soc. 1985, 107, 3971.
 (14) 14: GCMS m/z 523 (50, M ${ }^{+}-$SiMe $_{3}$), 341 (10), 283 (12), 185 (13), 73 (100); GC-FTIR (cm-1) 2959 (m) 2902 (w), 1860 (vs), 1402 (w), 1254 (m),891 (s), 844 (s); NMR spectra by subtraction of 8 and 13 from pyrolysate of 8; 'H NMR (DCCl_{3}) $\delta 0.104$ and 0.107 (singlets, $1: 1$), 0.185 and 0.192 (singlets, 2:1), other absorptions overlapped; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-1.90(2$ C), -1.74 (2 C) $,-0.88(2 \mathrm{C}), 0.18$ (2 C), 0.59 (6 C), 0.82 (6 C), 60.65 (1 C), 60.67 (1 C), 61.72 (2 C), 202.82 (1 C), 203.81 (1 C); ${ }^{29} \mathrm{Si}$ NMR (CDCl_{3}, external TMS) $\delta-21.59(2 \mathrm{Si}),-14.89(2 \mathrm{Si}),-3.88(2 \mathrm{Si}),-3.98(2 \mathrm{Si})$.

