Synthesis and Structure of Strained, Cyclic Bisallenes

Jibing Lin, Yi Pang, Victor G. Young, Jr., and Thomas J. Barton*

> Ames Laboratory (U.S. Department of Energy) and Department of Chemistry, Iowa State University Ames, Iowa 50011

Received January 25, 1993

Although we recently reported the surprising observations that 1,3-dilithio-1,3-bis(trimethylsilyl)allene (1) cleanly condenses with α -, ω -dichlorosilanes 2-4 to produce the strained silacycloallenes 5-7,¹ we assumed that polymerization, not cyclization, was the only reasonable option for the condensation of 1 and ClMe₂SiSiMe₂Cl or Me₂SiCl₂.

In contrast to this assumption, reaction of 1 and ClMe₂SiSiMe₂-Cl in THF affords in combined 57% yield an ca. 1:1 mixture of diastereomers 8 (meso) and 8 (dl). One of these diastereomers could be purified by fractional crystallization, thus allowing subtraction for the spectral features of the other.²

Assignment of structure could not be accomplished by NMR as chiral shift reagents were ineffective, but the meso structure was established for the selectively crystallized isomer by X-ray diffraction³ and the molecular structure is shown in Figure 1. The allene unit is bent only slightly from linearity to 178.6° but is twisted to produce a dihedral angle of 80.6° as defined as plane Si(1)C(1)C(2) vs Si(4)C(3)C(2). However, a dihedral angle of 86.1° is obtained from plane Si(1)C(1)Si(2) vs Si(3)C(3)Si(4), and comparison of plane Si(2)C(1)C(2) and Si(3)C(3)C(2) yields an apparently normal 89.4°-a result of both the bending and apparent rehybridization of the allene carbons as evidenced both by the bond angles and pyramidalization.

Condensation of Cl₂Me₂Si and dianion 1 in Et₂O produced in 32% yield the polysilaallene 9 ($M_w = 6900$, $M_n = 6500$) along with a trace of 1,3,5,7-tetrakis(trimethylsilyl)-4,8-disilacycloocta-

(34), 225 (10), 185 (16), 171 (18), 155 (13), 73 (100); GC-F ITR (cm⁻¹) 2960 (m), 1864 (vs), 1402 (w), 1255 (m) 874 (s), 846 (s), 790 (m); ¹H NMR (300 MHz, DCCl₃) δ 0.14 (s, 36 H), 0.17 (s, 12 H), 0.23 (s, 12 H); ¹³ C NMR (DCCl₃) δ -0.24 (4 C), 0.14 (4 C), 1.30 (12 C), 61.81 (4 C), 203.78 (2 C); ²⁹Si NMR (external TMS) δ -18.62 (4 Si), -2.33 (4 Si). (3) Crystal data for 8 (meso) at -50 °C: a = 8.768(2) Å, b = 11.291(3)Å, c = 11.726(3) Å, $\alpha = 104.74(2)^{\circ}$, $\beta = 102.42(2)^{\circ}$, $\gamma = 111.42(2)^{\circ}$, V =982.1(4) Å³, triclinic with space group P1, Z = 1, $\rho = 1.01$ g cm⁻³. The structure was solved by direct methods, R = 0.049 and $R_w = 0.068$ for 2272 reflections with $R^2 > 3.0\alpha(R^2)$ reflections with $F_0^2 > 3.0\sigma(F_0^2)$.

Figure 1. ORTEP drawing of 8 (meso). The methyl groups have been omitted for clarity. Selected bond distances (Å) and angles (deg) are Si(1)-C(1) = 1.866(4), C(1)-C(2) = 1.305(5), Si(2)-C(1) = 1.879(4),C(2)-C(2') = 4.162, Si(1)-C(1)-Si(2) = 124.5(2), Si(1)-C(1)-C(2) =118.9(3), Si(2)-C(1)-C(2) = 116.6(3), C(1)-C(2)-C(3) = 178.6.

1,2,5,6-tetraene (10).⁴ The same condensation conducted in THF

afforded 10 in 33% yield as crystalline needles, mp 115-17 °C. The 'H NMR spectrum of 10 (Table I) revealed a symmetrical structure which could be rationalized as a rapidly equilibrating chair form which, however, was not supported by NMR studies down to -42 °C.

The molecular structure of 10 was solved by X-ray diffraction⁵ and is shown in Figure 2. Of greatest interest is the allene bend of 175.2° and twist of 78.1°, as defined by the Si(2)-C(1)-C(2)and Si(4)-C(3)-C(2) planes. In addition, to accommodate two allenes in an 8-membered ring, the terminal carbons have undergone apparent rehybridization to decrease the internal bond angles with a concomitant increase in the external (Si-C-SiMe) angles (Figure 3).

All-carbon, cyclic bisallenes have been reported,⁶ with the smallest isolated being the 10-membered ring 11.7-9 As the crystal structure of 11 has been determined,8 the transannular distances between the central carbon atoms may be compared. As expected, the longer bonds associated with silicon produce a significantly longer C(2)-C(2') distance of 4.162 Å in 8 as opposed to 3.208 Å in 11. However, this transannular distance in 10, 2.859 Å, is notably shorter than in 11 but slightly longer (0.26 Å) than the transannular sp-carbon distances in the smallest cyclic diyne for which structural information is available, 1,5-cyclooctadiyne (12).¹⁰ The sp-carbons of 12 (δ 95.8) are shifted considerably downfield from those of normal acetylenes, an effect which has been ascribed to the olefinic character of the bent acetylenes in

© 1993 American Chemical Society

3794

⁽¹⁾ Pang, Y.; Petrich, S. A.; Young, V. G. Jr.; Gordon, M. S.; Barton, T.

⁽²⁾ **8** (*meso*): mp 215–216 °C; GCMS m/z 523 (57, M⁺ – ²⁸SiMe₃, M⁺ not observed by GCMS), 341 (31), 283 (19), 225 (11), 185 (18), 171 (20), 155 (13), 73 (100); GC-FTIR (cm⁻¹) 2959 (m), 2904 (w), 1867 (vs), 1404 (w), 1254 (m), 881 (s), 844 (s); HRMS calcd for $C_{26}H_{60}Si_8 m/z$ 596.284 93, measd (Kratos MS50) 596.284 55; UV (nm, hexane) $\lambda_{max} = 202 (5.8 \times 10^4)$, 258 (7.2 × 103). 8 (dl): GCMS (separated from 8 (meso) m/z 523 (57), 341 (34), 225 (10), 185 (16), 171 (18), 155 (13), 73 (100); GC-FTIR (cm⁻¹) 2960

^{(4) 10:} mp 115-117 °C; GCMS m/z 480 (66, M⁺), 465 (53), 155 (10), 73 (100); GCIR (cm⁻¹) 2961 (m), 2905 (w), 1871 (vs), 1406 (w), 1258 (m), 904 (s), 844 (s); UV (nm, hexane) $\lambda_{max} = 204 (5.34 \times 10^4), \lambda_{sh} = 252 (2.94$ × 10³); HRMS calcd for C₂₂H₄₈Si₆, m/z 480.237 18, mead 480.236 97. (5) Crystal data for 10 at -60 °C: a = 12.244(2) Å, c = 10.523(2) Å, V

^{= 1577.5(7)} Å³, tetragonal with space group $P4_22_12$, Z = 2, $\rho = 1.013$ g cm⁻³.

The structure was solved by direct methods, R = 0.031 and $R_* = 0.046$ for 1063 reflections with $F_0^2 > 2.0\sigma(F_0^2)$.

⁽⁶⁾ For an excellent review of cyclic allenes, see: Johnson, R. P. Chem. Rev. 1989, 89, 1111.

⁽⁷⁾ Skattebol, L. Tetrahedron Lett. 1961, 167.

 ⁽⁹⁾ Irngartinger, H.; Jager, H. U. Tetrahedron Lett. 1976, 3595.
 (9) The isomeric cyclodeca-1,2,5,6-tetraene is known, but structural details

are not available: Baird, M. S.; Reese, C. B. Tetrahedron 1976, 32, 2153.

Table I.Selected Spectral Features of Tetrakis(trimethylsilyl)allene,8 (meso), and 10

compd	IR (cm ⁻¹)	¹ H NMR (δ)	¹³ C NMR (δ)	²⁹ Si NMR (δ)
(Me ₃ Si) ₄ C ₃	1870		0.40 (12 C)	-3.93
			203.64 (1 C)	
			64.03 (2 C)	
8 (meso)	1867	0.12 (s, 36 H)	-0.56 (4 C)	-22.75 (4 Si)
		0.17 (s, 12 H)	0.05 (4 C)	-3.24 (4 Si)
		0.22 (s, 12 H)	0.97 (12 Č)	
			62.21 (4 C)	
			203.72 (2 C)	
10	1871	0.09 (s, 36 H)	0.55 (12 C)	-5.06 (4 Si)
		0.23 (s, 12 H)	2.24 (4 C)	0.20 (2 Si)
			66.0 (4 C)	
			205.38 (2 C)	

Figure 2. ORTEP drawings of 10. Selected bond lengths (Å) and angles (deg) are Si(1)-C(1) = 1.861(2), Si(2)-C(1) = 1.881(2), C(1)-C(2) = 1.311(3), C(1)-C(2)-C(3) = 175.2(2).

Figure 3. Comparison of transannular distances between sp-carbons in strained, cyclic bisallenes and 1,5-cyclooctadiyne.

12 rather than to a "proximity effect".¹¹ Although no large shifts are observed in the ¹³C NMR of 10 relative to 8, future efforts at probing the chemistry of these cyclic bisallenes will seek evidence for proximity interaction.

(11) For a review of "proximity interaction of acetylenes", see: Misuni, S.; Kaneda, T. In *The Chemistry of the Carbon-Carbon Triple Bond*; Patai, S., Ed.; John Wiley & Sons: Chichester, 1978; Chapter 16. Photolysis of 8 (*meso*) or 8 (*dl*) in hexane with a low-pressure Hg-arc lamp produced an approximately 1:1 mixture of the two diastereoisomers. After ca. 2 h of irradiation, a third isomer $(13)^{12}$ was observed in the reaction mixture (14% after 24 h). The

photoinduced racemization of allenes is well established,¹³ but the photoisomerization of 8 to 13 is to our knowledge unprecedented and formally represents two dyatropic rearrangements. Under the same conditions of photolysis, 10 failed to react.

Gas-phase flow pyrolysis of two different mixtures of 8 (*meso*) and 8 (*dl*), one at 545 and one at 585 °C, also produced 13 as the major product along with a significant amount of isomer

14,¹⁴ which is assumed to be an intermediate in the 8-to-13 conversion. Bisallene 10 was unchanged upon pyrolysis at 600 °C and at 650 °C began to decompose to a myriad of products.

Acknowledgment. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-ENG-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences.

(12) 13: colorless crystals, mp 190–191 °C; GCMS (M⁺ not observed) m/z 523 (24, M⁺ – SiMe₃), 411 (15), 185 (11), 155 (11), 73 (100); HRMS calcd for C₂₂H₄₈Si₆ m/z 596.284 93, measd (Kratos MS50) m/z 596.284 87, GC-FTIR (cm⁻¹) 2959 (m), 2903 (w), 1861 (vs), 1254 (m), 868 (s), 803 (s); ¹H NMR (300 MHz, DCCl₃) δ 0.096 (s, 36 H), 0.141 (s, 24 H); ¹³C NMR (DCCl₃) δ –2.24 (8 C), 0.66 (12 C), 60.83 (2 C), 64.43 (2 C), 201.81 (2 C); ²⁹Si NMR (DCCl₃, external TMS) δ –24.51 (4 Si), –3.98 (4 Si); UV (nm, hexane) λ_{max} = 208 (5.9 × 10⁴), λ_{sh} = 226 (4.5 × 10⁴), 256 (1.8 × 10⁴).

(13) Photoinduced racemization of allenes has been reported: Stierman,
T. J.; Johnson, R. P. J. Am. Chem. Soc. 1985, 107, 3971.
(14) 14: GCMS m/z 523 (50, M⁺ - SiMe₃), 341 (10), 283 (12), 185 (13),

(14) 14: GCMS m/z 523 (50, $M^+ - SiMe_3$), 341 (10), 283 (12), 185 (13), 73 (100); GC-FTIR (cm⁻¹) 2959 (m) 2902 (w), 1860 (vs), 1402 (w), 1254 (m), 891 (s), 844 (s); NMR spectra by subtraction of 8 and 13 from pyrolysate of 8; ¹H NMR (DCCl₃) δ 0.104 and 0.107 (singlets, 1:1), 0.185 and 0.192 (singlets, 2:1), other absorptions overlapped; ¹³C NMR (CDCl₃) δ –1.90 (2 C), -1.74 (2 C), -0.88 (2 C), 0.18 (2 C), 0.59 (6 C), 0.82 (6 C), 60.55 (1 C), 60.67 (1 C), 61.72 (2 C), 20.28 (1 C), 203.81 (1 C); ²⁹Si NMR (CDCl₃), external TMS) δ – 21.59 (2 Si), -14.89 (2 Si), -3.88 (2 Si), -3.98 (2 Si).